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Particle Imaging Sizing: GLMT Simulations
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Abstract: Defocused off-axis images of particles are computed in the framework of the generalized
Lorenz-Mie theory. Two exemplifying cases are studied: interferometric sizing at large off-axis angles
and imagingin near forwarddirections(shadowDoppler velocimetry).
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1. Introduction
In the field of spray analysis, a large number of techniques has been developed to measure the properties of
droplets. The most often measured properties are the velocity and the size of the droplets. These measurement
techniques can be sorted in two categories: (i) point measurement techniques which measure droplets one after one,
waiting that the droplets cross a small optical probe, (ii) integral methods which simultaneously probe an ensemble
of particles in a large control volume. Nowadays, the most popular techniques for velocity measurements are LDV
and PlY. LDV measures the velocity of individual particles while PlV[l!. [2!. [31 measures velocities of a lot of
particles in a plane, giving 2D velocity maps. PDA is an extension of LDV which gives the possibility to measure
at the same time the velocity and size of individual particles. [4!. [5!. [61 lmaging techniques are a natural potential of
these approaches as interferometric imaging for PlV and shadow Doppler for LDV.

lmaging techniques can be sorted as on-axis and off-axis imaging. On-axis imaging of droplets, including
defocusing effects, have been extensively explored in the framework of Lorenz-Mie theory (plane wave) [71 and of
generalized Lorenz-Mie theory (incident Gaussian beam). [S!. [9!. [101 This rigorous approach has also been applied to
cylindrical scatterers.l'" For off-axis imaging, only the case of in focus particles has been investigated.!'?' This
paper is then devoted to the analysis of off-axis defocused images of spherical droplets. Two complementary cases
must be studied corresponding to two techniques under development (i) one incident beam with a large axis angle
of collection (ii) two incident beams with a near forward off-axis collection.

The paper is organized as follows. Section 2 is devoted to interferometric imaging. Subsection 2.1 recalls
the theoretical basis of off-axis imaging. Subsection 2.2 compiles numerical predictions, devoted to the defocusing
effect. Section 3 is devoted to shadow Doppler velocimetry. Section 4 is a conclusion.

2. Interferometric Imaging

2.1 Theoretical Background

On-axis and off-axis imaging of spherical particles is strongly connected with glare points. This section is then
organized into three subsections. The first subsection recalls the glare point theoretical background. The second
subsection discusses the interest of defocus off-axis imaging, and the last one describes a numerical scheme.
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2.1.1 Glare points and off-axis imaging

According to van de Hulst,[12] glare points are bright spots seen on the surface of a water drop when it is illuminated
by a broad parallel beam and viewed under an arbitrary scattering angle. These bright spots can be computed from
Lorenz-Mie theory by carrying out a Fourier integral on the aperture of the collecting lens. These computations
describe the distribution of energy in the image plane. In the geometrical optics framework, the bright spots can be,
for most of them, interpreted as created by a particular class of rays but not all of them. [12], [13] For example, in
forward direction, they are created by the light externally reflected and the light directly refracted through the
particle (p = 0 and p =1 rays, according to van de Hulst notation). Then, in the image plane, at least two bright spots
appear on one particle for an arbitrary scattering angle.!'?' The direct measurement of the bright spots can be used to
measure particle diameter and particle refractive index. Nevertheless, the magnification required to measure the
glare spots must be so large that its use is not easy in realistic multiphase flows. An indirect use of the glare spots is
described in the next subsection.

(1)

2.1.2 Off-axis defocused imaging

Starting from the work of Anders et al.,[14] who demonstrated that a phase difference for each class of rays is given
by a simple relation, Glover et al. [15] have established that the angular fringe separation A8m, in the image, is
directly dependent on the particle size:

LIB - 2 n
m- a(l+A)

where m is the relative refractive index of the particle and a is the size parameter defined by a= nd/A. d is the
particle diameter and A is the wavelength of the incident light.

2.1.3 Numerical scheme
Figure 1 displays the scheme of the computational geometry. The incident beam displays a finite angle with respect
to the optical axis. A relay lens forms an image of the object plane on an image plane. The recording element
(photographic plate or CCD) is in a plane located at a distance L of the image plane. When L is negative, the
recording element plane is between the lens and the image plane.
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Fig. 1. Scheme of GLMT image computations.

We simulate this configuration as follows (i) the light propagation from the particle to the input plane of the
lens is computed by GLMT, (ii) the propagation of the light from the input plane (ZI) to the output plane (Z2) of the
lens (assumed to be a perfect phase lens) is described by only introducing a phase shift,[16] (iii) the propagation of
the light from the output plane of the lens (Z2) to the detector plane (Z3) is computed by a Huygens-Fresnel
integral. This integration is carried out using Hopkins' approach. [17], [IS]
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2.2 Exemplifying Numerical Results
Computations are carried out for various apertures, magnifications, particle sizes and particle locations.

2.2.1 Effect of the defocus

First, we assume that the scatterer is a water droplet, with a refractive index of 1.33-0i. The scattering angle is set
of 66S with the electric polarization of the incident beam perpendicular to the observation plane, implying the
same intensity for the reflected and the refracted lights

The first study is devoted to dependence of the light intensity in the detector plane versus the value of the
defocus. The focal length is 600 mm and the lens diameter is 100 mm, corresponding to an aperture number equal
to 6. The first series of computations is carried out for a magnification equal to 5 (the distance between the object
plane and the lens is equal to 0.72 m while the distance between the lens and the image plane is 3.6 m).

Figure 2 (default=O)displays the intensity distribution when the detector plane is located at the image plane.
The abscissa unit is the distance on the image plane divided by the particle size. The distribution of intensity is here
characterized by two spots of high intensity, corresponding to the glare spots. One of the spots is created by the
reflected light while the other is created by the refracted light. In arbitrary unit, the mean intensity of these peaks is
about 30. Next, the detector plane is moved away from both the lens and the image plane. The series of figures
displays the light distribution versus the value of the defocus. The size of the images increases with the defocus
distance (Fig. 3) while the number of fringes is nearly constant when the defocus is big enough (see Fig. 4).
Furthermore, the mean intensity sharply decreases with the distance (see Fig. 5).
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Fig. 2. Example of the evolution of the image with the defocus. The particle is a water droplet (m=1.33) with
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Fig. 3. Image size versus the defocus length. Fig. 4. Fringes number versus the defocus length.
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Fig. 5. Image maximum intensity versus the defocus length.

2.2.2 Size dependence

Next, for the same lens, the same magnification and a distance between the object plane and the lens equal to
0.72 m while the distance between the lens and the detector plane is 3.4 m, the distribution of light is displayed in
the series of Fig. 6 with the particle size d as a parameter. The images exhibit a good visibility. Figure 7
exemplifies a close linearity relating the number of fringes and the particle diameter for this geometry.

3. Shadow Doppler Velocimeter
The Shadow Doppler Velocimeter has been developed to measure the size of irregular particles. Basically it
consists in imaging the control volume of a laser Doppler anemometer with a linear CCD camera. The dimension
and shape of irregular scatterers (more precisely of their projection) are reconstructed from a time series of slices
realized with the linear camera.

The computational scheme is essentially the same than the one introduced previously. Nevertheless, the
numerical difficulties are more important because we must now compute and add four contributions to obtain an
image (i) the field from beam 1 (ii) the field from beam 2 (iii) the field scattered by the particule from beam 1 (iv)
the field scattered by the particle from beam 2.

The angle between the two beam is set to 2.86°, the wavelength is 0.488 pm, and the collecting lens has a
diameter equal to 10 cm with a focal length equal to 600 mm. Systematic computations have been carried out. The
particle diameter ranges from 10 to 160 pm, by steps of 50 pm. Two examples of results are given here. First,
Figure 8 compares the images of a 10 pm droplet when the relative intensity between the two incident laser beams
varies from 1 to 0.1.
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Fig. 6. Out of focus images for different particle sizes (8, 16, 32 and 64/lm).
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Fig. 8. Evolution of the contrast of the image of a 10 pm droplet with the relative intensity of the two laser

beams as parameter.

Next, Figure 9 displays the behaviour of the contrast for a 10 pm droplet. The droplet is located along the
optical probe axis, the geometrical optic in-focus location is predicted at O. The step between two location of the
droplet is 50 pm. The shadow as well as the focusing effects are emphasized on this figure, but the best image
location is find to be at about 1000 microns
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Fig. 9. Evolution of the contrast for a 10 pm droplet located along the optical probe axis.
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To explore the origine of this effect, maps of intensity and phase on the input surface of the lens has been
computed for a 40 pm water droplet on which impinges a large beam (Wo= 1.5 mm) and for 3 particle locations:
-1100, 0 and +1100 pm. Only one map of intensity is displayed in Fig. 10, because the intensity distribution is
equal for the three particle locations. Then the iso-phase level are displayed in Figs. 11 to 13 for a particle location
of -1100, 0 and +1100 pm. For the phase, large differences are predicted. This effect correspond to have an
effective focal lens which is a function of the angle of the two direct beams relatively to the input surface of the
imaging lens.

Fig. 10. Iso-level of scattered intensity.

Fig. 12. Behaviour of the phase on the input surface of

the lens for a 40 pm diameter droplet. The parameter is

the particle location in the control volume (0 pm).

Fig. 11. Behaviour of the phase on the input surface of

the lens for a 40 pm diameter droplet. The parameter is

the particle location in the control volume (-1100 pm).

Fig. 13. Behaviour of the phase on the input surface of

the lens for a 40 pm diameter droplet. The parameter is

the particle location in the control volume (+1100 pm).
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The generalized Lorenz-Mie theory is used in connection with classical Fresnel-Huygens integral to compute the
properties of the light scattered by spherical scatterers which are off-axis and out-of-focus. This approach gives the
possibility to compute libraries of images with very well mastered geometric and optical conditions. These libraries
of images can be used to understand some particular situations and/or to test various signal processing schemes in
order to extend the potential of imaging measurement techniques.
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